A ESTATÍSTICA E SUAS FERRAMENTAS NECESSÁRIAS PARA COMPREENDER E FACILITAR SEUS ESTUDOS

BRAGA, Lucas PADILHA, Eliandro José (orientador)

RESUMO

Para o estudo da matemática existem diversas ferramentas e uma muito conhecida e usada as vezes despercebida por vários indivíduos para obter um resultado retirando dados de uma determinada população e se chamada estatística, é uma parte da matemática que a coleta de dados, sendo utilizada em pesquisas para determinar um projeção futura sendo descoberta sua utilidade nos tempos dos faraós aonde foram encontrados pergaminhos e descrições em pedras da época aonde foi foram encontrados registros de nascimentos, mortalidade e como aumentar a produção de alimentos, este artigo apresenta um desenvolvimento teórico assim apresentando alguns exercícios que se fazem necessários para o entendimento do processo teórico e seus exercícios, para entender a aplicabilidade de modelos estatísticos, como a confiabilidade, os testes de hipóteses e a regressão linear, retirando amostras para o desenvolvimento dos testes e inserindo na população total a ser estudada em cada modelo, tornando seu dia a dia mais interessante para um determinado estudo e procurando métodos semelhantes para sua aplicação, recolhendo informações necessárias para determinamos um resultado de um certo modelo estatístico, como descobrir a eficiência de produtos como telefones, máquinas industriais, drogas medicinais como vacinas, produção de alimentos e muitos outros itens como lâmpadas, televisores, chegando a uma conclusão que a estatística faz parte de toda produção de bens de consumo e sua confiabilidade, na linha de produção de uma indústria de transformação com testes de hipóteses para defeitos e aplicando a regressão linear para aumento de produção agrícola.

Palavras chaves: confiabilidade, testes de hipótese e regressão linear

1. INTRODUÇÃO

O tema deste artigo é entender como funciona o estudo dos modelos estatísticos e suas aplicabilidades construindo testes para buscar uma compreensão simples e eficiente, conhecer os modelos existentes que no artigo são a probabilidade, confiabilidade, testes de hipóteses e a regressão linear compreender a teoria da matéria e seus métodos, assim conhecendo um estudo da estatística completo.

Como governos, produtos de necessidades básicas e a ciência podem utilizar os modelos estatísticos para atender a certa demanda, como crescimento populacional afeta uma região, como produzir mais produtos básicos, e a necessidade de aumentar a produção de drogas medicinais, o ano de 2020 durante a pandemia foi gerado centenas de números na produção no aumento da pobreza e muito mais.

A situação para apresentar a aplicabilidade dos modelos estatísticos os dados coletados são a realidade vivida hoje, a confiabilidade pode ajudar a determinar a durabilidade de um certo produto que usamos no dia a dia como celular, carros e eletrodomésticos em geral.

O teste de hipóteses está presente em todas as empresas de médio e grande porte aonde pesquisadores criam perguntas para entender o perfil profissional de sua equipe de colaboradores, presente na produção industrial com retirada de amostras para testes e confiabilidade.

A regressão linear podemos entender variações de preços e produção, a população cresce em progressão geométrica e produtos básicos avançam em progressão aritmética.

Justificando que para este estudo a matemática uma ciência exata está presente na agricultura, na produção de telefones para informar o tempo de duração, em criações de drogas medicinais para melhorar a saúde de uma certa população e tudo isso é retirado de uma área da matemática chamada de modelos estatísticos.

O método utilizado para o desenvolvimento do trabalho e as ferramentas disponíveis é focado nos sites com retirada de dados e informações como a parte

teórica, fórmulas, gráficos e tabelas tentando aproveitando o máximo de informação do estudo para descrever em poucas linhas o que são modelos estatísticos, em um ano aonde a estatística está mais presente devido a epidemia do corona vírus, onde afetou a produção industrial e a produção de alimentos.

2. ESTATÍSTICA

Estatística ferramenta matemática para coleta de dados, interpretação e análises numéricas, assim profissionais da área utiliza a estatística para pesquisas cientificas, politicas, médicas, educação e demais áreas que necessitam deste estudo.

A revista do Instituto Internacional de Estatística, informa que cinco homens receberam a honra de serem chamados de fundadores do estudo estatístico por diferentes autores, estes estudiosos se chamavam *Hermann Conring, Gottfried Achenwall, Johann Sussmilch, John Graunt e Wiliam Petty.*

A estatística é acompanhada por estudo da teoria das probabilidades estudado no século XVII por *Pascal e Fermat*, assim adquirindo conhecimento suficiente para usarem os dados coletados para resultados positivos.

Estudos mostram que a estatística surgiu quando governos começaram a procurar informações quantitativas e qualitativas sobre riquezas, tributos e população. Pesquisas demonstram que a mais de dois mil anos a china já se preocupava com o aumento de sua população usando o censo para determinar o crescimento populacional, no Egito antigo existem escrituras aonde os faraós já usavam o estudo para aumento de suas colheitas.

A estatística hoje é aplicada largamente nos estudos de ciências naturais e sociais, inclusive nas administrações públicas e privadas sendo dividida em duas partes que são a descritiva, robusta e inferencial.

A estatística inferencial é identificar relações de causa e efeito entre variáveis; estatística robusta é uma forma de preservar a distribuição quanto possíveis dados e a estatística descritiva é mais usada é apresentada em gráficos ou relatórios.

Para compreender o estudo da estatística, existem conceitos básicos que precisam estar bem definidos para estender o referido estudo os conceitos são:

- População ou universo estatístico em que todos elementos participam de um determinado tema pesquisado;
 - _ Dado estatístico deve estar envolvido com o tema a ser pesquisado;
- _ Amostra é quando retiramos uma parte do total a ser pesquisando assim evitamos trabalhar com números muito grandes;
 - _Variável é a dependência do contexto de pesquisa;
 - _Rol pode ser crescente ou decrescente em números ou letras;
- _ Classes quando a variável é continua e deve ser agrupadas em intervalos reais.

Temos ainda na estatística as medidas de posição:

_A média e quando a soma é dividida pela quantidade de resultados atingidos.

$$x = \frac{a_1 + a_2 + a_3 + a_{4 + \dots + a_n}}{n}$$

_A mediana é o resultado central de um rol.

_A moda elemento de um rol que aparece com maior frequência.

(fonte: estatística aplicada a todos os níveis, autor: Castanheira, Nelson Pereira, 2018)

A estatística possui muitas ferramentas e técnicas a serem usadas para análise de dados uma destas ferramentas é conhecida como análise de regressão ou regressão linear e foi usado por *Sir Francis Galton (1822-1911)* que estudou a relação da estatura das crianças em relação aos pais, que apresento neste artigo.

3. Aplicabilidade dos modelos estatísticos

3.1 Modelos Estatísticos

É um conjunto de hipóteses sobre a geração de dados observados e dados semelhantes de diferentes fatores, em termos matemáticos o modelo é conhecido como par S/P, aonde o S é o espaço amostra e o P é a distribuição das probabilidades no espaço amostral S.

O modelo estatístico pode ser usado para descrever um conjunto de distribuição, assumindo um determinado conjunto de dados, que a partir de uma distribuição normal assume um modelo gaussiano este modelo foi criado e desenvolvido por um matemático alemão conhecido por muitos como " o príncipe da matemática" ou " o mais notável dos matemáticos" seu nome *Joahann Carl Friedrich Gauss* (1777 / 1855).

A estatística hoje é uma ferramenta em empresas para confirmação e criação de hipóteses estatística, utilizando softwares DATA ROBOT para calcular a margem de erro assim chegando ao perfil da empresa, tem três passos importantes para criação da pesquisa são:

Primeiro levante hipóteses para formular uma pesquisa, segundo tenha um modelo, terceiro elabore um questionário e com as hipóteses, o modelo e um questionário com uma quantidade de perguntas suficientes devemos usar os modelos estatísticos para chegar ao resultado.

3.2 CONFIABILIDADE

A confiabilidade é usada muito na engenharia de sistemas sendo uma medida de disponibilidade, estudada no início dos anos 80 por *Jean Pierre Laprie* como termo para abranger estudos de tolerância e falha de um determinado sistema, sendo característica muito conhecida chamada de durabilidade.

A confiabilidade e dividida em três elementos:

- Atributos, uma maneira de avaliar a confiabilidade do sistema;
- _ Ameaças, uma compreensão das coisas que podem afetar a confiabilidade de um sistema:
 - _ Meios, formas de aumentar a confiabilidade de um sistema.

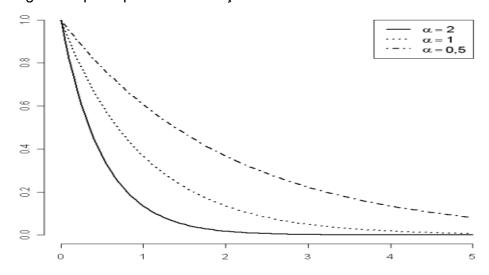
Na confiabilidade existe a análise de tempo e falha que corresponde ao tempo de vida de um determinado item e seus componentes, um conceito básico para

entender a vida útil de um determinado item é entender como o fabricante chega ao termo de garantia de seus produtos.

O fabricante a análise de tempo de um determinado produto para tentar chegar a uma duração média para informar o tempo de garantia e a análise de falha é o resultado dos testes em um determinado lote.

Uma característica importante a respeito da durabilidade de um componente é a média (MTTF) e a variância são dadas pelas fórmulas;

$$E(T) = MTTF = \frac{1}{\alpha}$$
 e $Var(T) = \frac{1}{\alpha^2}$


Pegamos um exemplo para calcular um tempo de falha por exemplo, uma lâmpada de *led* com vida útil de 30.000 horas e teremos que calcular quantas lâmpadas com tempo de falha 20.000 horas para isso usamos a função da confiabilidade.

$$E(T) = MTTF = \frac{1}{\alpha}$$

$$E(8.000) = \frac{25.000}{30.000} = 0.83$$

Este resultado de 0,83 multiplicando por 100 significa que 83% do total de lâmpadas apresentará defeito após o vencimento da garantia de 30.000 hora e 17% apresentará defeitos antes do tempo estimado para sua durabilidade.

o gráfico que representa a função confiabilidade é:

(fonte: www.portalaction.com.br)

3.3 TESTES DE HIPÓTESES

Também conhecido como teste estatístico ou de significância, este procedimento permite tomar uma decisão entre duas ou mais hipóteses com dados retirados de uma certa amostra.

Com a teoria da probabilidade é possível inferir quantidades de um resultado em uma população a partir da amostra estudada, essas suposições estudadas que podem ser verdadeiras ou falsas e são denominadas hipóteses estatísticas.

A teoria de hipóteses teve estudos iniciados em 1710 (*John Arbuthhnot*) publicou um dos primeiros trabalhos, 1778 (*Pierre Laplace*) comparou a taxa de nascimentos entre meninos e meninas na Europa concluindo que as taxas estava nas mesmas proporções, 1900 (*Karl Pearson*) concluiu um dos primeiros procedimentos estatísticos propostos no sentido moderno e sendo conhecido como o Qui-Quadrado que determina a curva de frequência de uma determinada população.

A ideia de testar hipóteses, codificando e elaborando estudos aconteceu em 1925 por *R.A Fischer*, em 1928 (*Neumam* e *Pearson*) criaram outra abordagem.

Hipóteses estatísticas é uma ferramenta que permite rejeitar ou não uma hipótese

Nos testes de hipóteses apresentam tipos de erros, dando algum critério e são chamados de erros do tipo I e II.

Erro tipo I = rejeitar a hipótese nula H_0 quando ela é verdadeira

Erro tipo II = não rejeitar a hipótese nula H_0 quando ela é falsa

Existe uma probabilidade de cometer um erro um erro na tomada de decisão e podendo ser explicado da seguinte forma.

Probabilidade do erro tipo I

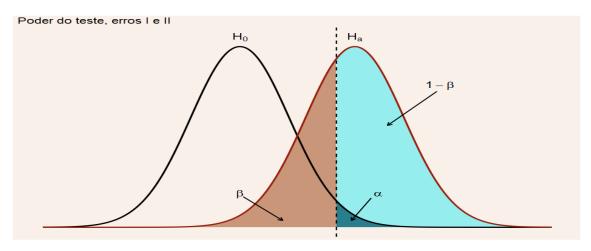
$$\alpha = P(erro\ tipo\ I) = P(rejeitarH_0\ e\ H_0verdadeira)$$

A probabilidade do erro tipo I, α é chamado de nível de significância, ou erro α , ou ainda tamanho dos testes.

Probabilidade do erro do tipo II

 $\beta = P(erro\ do\ tipo\ II) = P(não\ rejeitar\ H_0\ e\ H_0\ falsas)$

Potência ou poder do teste


 $1 - \beta = P(rejeitar H_0 e H_0 verdadeira$

O poder do teste ou potência é a probabilidade de rejeitar a hipótese nula H_0 , quando a hipótese alternativa H_1 é verdadeira.

Os procedimentos usados para o teste de hipóteses são:

- 1. Escolher a hipótese nula ou alternativa;
- 2. Estabelecer estimativa do teste para testar a hipótese nula;
- 3. Determinar o valor do erro do tipo I que varia entre 1% até 5%;
- Retirar uma amostra da população;
- 5. Se o valor estiver na região crítica pelo nível de significância se rejeita e caso demostre o contrário não se rejeita;
- 6. Para casos que não for possível rejeitar a hipótese nula podem repetir testes com outros valores para maior precisão.

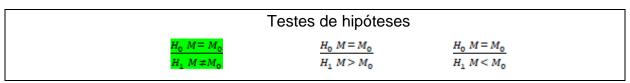
No gráfico ilustra o poder do teste entre a relação entre dos erros do tipo I e II, associando as hipóteses nulas e alternativas.

(fonte: inf.ufsc.br))

Para resolução de exercícios de testes de hipóteses existe uma tabela como a da foto para resolver exercícios propostos segue uma imagem de uma determinada parte, e um exercício para entendermos o cálculo da média:

0,5	0,1915	0,1950	0,1985	0,2019	0,2054	0,2088	0,2123	0,2157	0,2190	0,2224
0,6	0,2257	0,2291	0,2324	0,2357	0,2389	0,2422	0,2454	0,2485	0,2517	0,2549
0,7	0,2580	0,2611	0,2642	0,2673	0,2703	0,2734	0,2764	0,2794	0,2823	0,2852
0,8	0,2881	0,2910	0,2939	0,2967	0,2995	0,3023	0,3051	0,3078	0,3106	0,3133
0,9	0,3159	0,3186	0,3212	0,3238	0,3264	0,3289	0,3315	0,3340	0,3365	0,3389
1,0	0,3413	0,3438	0,3461	0,3485	0,3508	0,3531	0,3554	0,3577	0,3599	0,3621
1,1	0,3643	0,3665	0,3686	0,3708	0,3729	0,3749	0,3770	0,3790	0,3810	0,3830
1,2	0,3849	0,3869	0,3888	0,3907	0,3925	0,3944	0,3962	0,3980	0,3997	0,4015
1,3	0,4032	0,4049	0,4066	0,4082	0,4099	0,4115	0,4131	0,4147	0,4162	0,4177
1,4	0,4192	0,4207	0,4222	0,4236	0,4251	0,4265	0,4279	0,4292	0,4306	0,4319
1,5	0,4332	0,4345	0,4357	0,4370	0,4382	0,4394	0,4406	0,4418	0,4429	0,4441
1,6	0,4452	0,4463	0,4474	0,4484	0,4495	0,4505	0,4515	0,4525	0,4535	0,4545
1,7	0,4554	0,4564	0,4573	0,4582	0,4591	0,4599	0,4608	0,4616	0,4525	0,4633

(fonte:www.omatematico.com)


As fórmulas a serem utilizadas para o cálculo da média achamos o *z* estatísticos;

$$Z = \frac{X - M_0}{\frac{\sigma}{\sqrt{n}}}$$

Exercício, uma linha de produção opera com um peso médio de enchimento de 16 ml por recipiente. O sobre enchimento e o sub enchimento são problemas sérios e a linha de produção deve ser paralisada se qualquer um dos dois ocorre,

sabe-se que o desvio padrão é 0,8 ml. Um inspetor de controle de qualidade amostra 30 itens a cada 2 horas e nesse momento toma a decisão de paralisar a produção para a calibragem ou não, se a media amostral for de 15,82 ml, que atitude recomendaria?

Informações necessárias para resolução do problema como o teste a ser utilizado, o gráfico a ser comparado;

(fonte: hackinganalystics.com)

Primeiro defini o teste que na figura se encontra na cor verde e depois usamos o gráfico acima para confirmar a aceitação do teste.

SOLUÇÃO;

Média amostral = 15,85 (x)

Média = $16ml (M_0)$

Desvio padrão = $0.8 (\sigma)$

Amostra = 30 (n)

$$Z = \frac{X - M_0}{\frac{\sigma}{\sqrt{n}}}$$

$$Z = \frac{15,85 - 16}{\frac{0,8}{\sqrt{30}}}$$

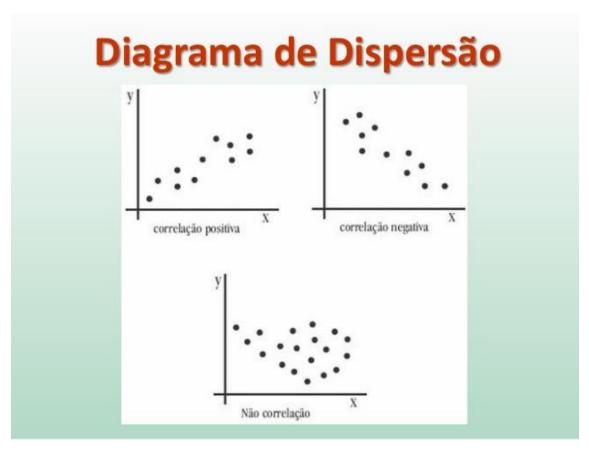
$$Z = -1,23$$

No exercício não foi informado o nível de significância, então usa-se o 5% ou 0,05, procurando na tabela o valor encontrado é 1,96 e nossa resolução no gráfico e

bicaudal aonde nas extremidades o valor é 1,96 e o nível de significância é 0,025, o resultado encontrado é 1,23 ficando na região de aceitação, assim como a diferença é pequena não a necessidade de paralisar a produção.

3.4 REGRESSÃO LINEAR

A regressão linear tem como objetivo tratar de um valor que não se consegue estimar inicialmente, este termo foi utilizado por *Sir Francis Galton* (1822-1911), seu estudo incialmente foi a relação entre país e filhos tentando encontrar uma relação entre suas estaturas.


A explicação da regressão linear é um pouco confusa a análise avalia a amplitude da variável em uma certa variável, assim ocorre uma variação entre outra variável.

O coeficiente de correlação de *Pearson* significa que quanto mais próximo dos extremos mais forte e sua correlação, assim pode ter valores entre +1 a -1. Um valor igual a zero indica uma não associação entre as duas variáveis, mas um valor acima de zero indica uma associação positiva indicando o aumento da variável e o mesmo acontecendo com a outra variável, um resultado menor que zero gera o oposto sendo aumento de uma variável e diminuição da outra variável, a fórmula de cálculo para o coeficiente é:

$$R = \frac{n\sum xy - \sum x - \sum y}{\sqrt{n(\sum x^2) - (\sum x)^2} \cdot \sqrt{n(\sum y^2 - (\sum y)^2}}$$

Onde, o X é igual a variável número um, Y pertence a variável dois, Zx é o desvio padrão da variável um, Zy é o desvio padrão da variável dois e N é o número dos dados.

Entre as principais vantagens do uso da correlação são, se o valor é independente de qualquer unidade usada para medir as variáveis e a amostra for grande, a posição da estimativa é mais provável e desvantagem são necessárias que as duas variáveis sejam em um nível quantitativo continuo e sua distribuição das variáveis seja semelhante a uma curva normal.

(fonte: www.portalaction)

Para estudar a regressão linear utiliza uma equação, que determina a relação entre ambas as variáveis sendo a seguinte equação:

$$y_x = \alpha + bx_i$$

Onde, y_i é a variável explicada (dependente), α é uma constante, b representa a inclinação em relação a variável explicada, x_i é a variável explicada (independente), ε_i são todos os fatores residuais mais os possíveis erros de medição.

A regressão linear é muito simples nada mais é que a correlação entre um item a ser estudado e suas variações como exemplo a taxa de juros, com juros menor maior consumo e juros alto poder de compra diminui, no exercício abaixo apresenta como é o estudo em relação a uma produção de grãos acompanhado seu crescimento.

Exemplo: Um produtor necessita acompanhar o crescimento de sua plantação de feijão, anotando semanalmente o desenvolvimento das plantas encontra os seguintes resultados:

Idade	
(semana)	Altura (cm)
1	5
2	12
3	16
4	22
5	34
6	38
7	41
8	45
9	50

Após estes dados deve encontra o somatório de x e y que está em vermelho, assim temos;

Х	у	X ²	y ²	Xy ²
1	5	1	25	5
2	12	4	144	24
3	16	9	256	48
4	22	16	484	88
5	34	25	1156	170
6	38	36	1444	228
7	41	49	1681	287
8	45	64	2025	360
9	50	81	2500	450
45	263	285	9715	1660

a)- Determine o coeficiente de correlação de Pearson e interprete o resultado;

$$R = \frac{n\sum xy - \sum x - \sum y}{\sqrt{n(\sum x^2) - (\sum x)^2} \cdot \sqrt{n(\sum y^2 - (\sum y)^2}}$$

$$R = \frac{9(1660) - 45(263)}{\sqrt{9(285) - (45)^2} \cdot \sqrt{9(9715) - (263)^2}}$$

R = 0.98865

A correlação é muito forte pois varia de -1 a +1 sendo que o resultado está próximo ao ideal.

b)- Determine e interprete o coeficiente de determinação;

$$R^2 = (0.98865)^2 = 0.97743 \cdot 100 = 97.743\%$$

A variação da altura e explicada pela variação do tempo em 97,743%.

c)- Determine a relação da reta de regressão (y = a + bx) que define o crescimento da plantação de feijão;

$$b = \frac{n(\sum xy) - \sum x \cdot \sum y}{n(\sum x)^2 - \sum x^2}$$
$$b = \frac{9(1660) - 45 \cdot 263}{9(285)^2 - 45^2}$$
$$b = 5.75$$

$$y = \frac{\sum y}{n} = \frac{263}{9} = 29,22$$
 $x = \frac{\sum x}{n} = \frac{45}{9} = 5$

$$a = y - bx = 29,22 - 5,75(5) = 0,472$$

Com os resultados obtidos a reta que define o crescimento da plantação é;

$$y = a + bx$$
$$y = 0,472 + 5,75x$$

d)- calcule a altura do pé de feijão com 3,5 semanas;

$$y = 0,472 + 5,75x$$
$$y = 0,472 + 5,75(3,5)$$
$$y = 20,597 cm$$

4.METODOLOGIA

O método utilizado para a produção do trabalho foi através de pesquisas em livros e sites ligados a matemática na área da estatística conhecendo a teoria e a pratica apresenta nos textos descritos.

Apresentado a estatística antes dos modelos do trabalho para o conhecimento teórico da matéria, conhecendo o que é população, dados, amostras,

variáveis e médias para a produção dos textos de confiabilidade, testes de hipóteses e regressão linear.

Para a produção do texto de confiabilidade, testes de hipóteses e regressão linear, necessário pesquisas e conhecer a teoria e entender aonde supostamente foi criado e utilizado, primeiro se cria uma teoria para depois executar.

O texto teve partes de retiradas de diversos autores e criando uma nova amostra para facilitar e compreender, para a maioria que enxerga a matemática e seus diversos estudos concordam que as vezes é impossível entender.

Todo trabalho foi focado em textos sem trabalho de campo e todo estudo apresentado foi apresentar um método simples para conhecer uma amostra da matéria, a confiabilidade no tempo de uso de televisores, como a matemática esta dentro de todas as empresas de exploração e transformação e como trabalha na produção de alimentos em um ano aonde a fome pode afetar milhões de pessoas pelo planeta, devido epidemia de corona vírus.

5.CONSIDERAÇÕES FINAIS

O tema este artigo foi descrever as aplicabilidades dos modelos estatísticos e suas funções em cada uma situação distinta e seu processo de pesquisa e execução foi dentro das ferramentas disponíveis em tempos de pandemia, assim formas de descobrir o significado e determinar o estudo até seu resultado final.

Na construção do trabalho foi necessário observar e mentalizar o significado teórico de cada modelo e como era utilizado antes e nos tempos atuais, pois os maiores filósofos que conhecemos iniciaram o estudo da matemática pois formavam uma teoria e anos mais tardes outros ampliavam a área de conhecimento

Descobrindo trabalhos e estudos de *Laplace (1823), Gauss (1823), James Yvory (1825/1826), Hagem (1837), Frierdrich (1838),* e tantos outros que com seus estudos apresentaram ao mundo a evolução da matemática e a possibilidade de descobertas de novos meios para facilitar o cotidiano de um professor e seu aluno.

Para iniciar qualquer tipo de trabalho a primeira palavra é a dificuldade para depois entender que pesquisando e desenvolvendo as ideias fluem com facilidade e a curiosidade aumenta, como a descoberta de uma vacina e sua confiabilidade para

uso no ser humano, o que a estatística faz dentro de uma empresa, na produção agrícola e na medicina.

Usando técnicas simples para produção dos textos e realização de exercícios, passando uma lógica desde a construção e a produção final, informando autores dos estudos para produzir um trabalho simples e atraente ao leitor.

O trabalho construído com muita dificuldade pois governadores e prefeitos criam leis de restrições, para evitar o aumento do contágio do covid-19, mas como o próprio texto criado faltou confiabilidade de informações, não apresentam testes de hipóteses de qual seria a melhor opção para evitar contágio e a regressão linear hoje todos conhece as altas dos alimentos demostram os resultados dos estudos.

6.REFERÊNCIAS

- GRINGS, **Testes de Hipóteses**: < omatematico.com> 2021
- GRINGS, Regressão Linear: < omatematico.com > 2021
- MINITAB, **Testes de Hipóteses**: < blog.minitab.com > 2021
- PORTALACTION, Confiabilidade: < portalaction.com.br > 2021
- BUSSAB, W. de O; MORETTIN, Estatística Básica: Saraiva 2002
- CASTANHEIRA, Nelson Pereira, Estatística Aplicada a Todos os Níveis: Intersaberes 2018